Heidi Steiner
Spring 2023
Discover patterns that may not be obvious from numerical summaries
dataset | n | Average x | Average y |
---|---|---|---|
Dataset 1 | 142 | 54.3 | 47.8 |
Dataset 2 | 142 | 54.3 | 47.8 |
Dataset 3 | 142 | 54.3 | 47.8 |
Dataset 4 | 142 | 54.3 | 47.8 |
Dataset 5 | 142 | 54.3 | 47.8 |
Dataset 6 | 142 | 54.3 | 47.8 |
Dataset 7 | 142 | 54.3 | 47.8 |
Dataset 8 | 142 | 54.3 | 47.8 |
Dataset 9 | 142 | 54.3 | 47.8 |
Dataset 10 | 142 | 54.3 | 47.8 |
Dataset 11 | 142 | 54.3 | 47.8 |
Dataset 12 | 142 | 54.3 | 47.8 |
Dataset 13 | 142 | 54.3 | 47.8 |
How, if at all, are these 13 datasets different from each other?
dataset | n | Average x | Average y | St Dev x | St Dev y |
---|---|---|---|---|---|
Dataset 1 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 2 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 3 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 4 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 5 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 6 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 7 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 8 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 9 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 10 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 11 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 12 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
Dataset 13 | 142 | 54.3 | 47.8 | 16.8 | 26.9 |
dataset | n | Average x | Average y | St Dev x | St Dev y | Correlation |
---|---|---|---|---|---|---|
Dataset 1 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 2 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 3 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 4 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 5 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 6 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 7 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 8 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 9 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 10 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 11 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 12 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
Dataset 13 | 142 | 54.3 | 47.8 | 16.8 | 26.9 | -0.1 |
MS Excel, LibreOffice - Calc
R (e.g. ggplot2) and Python (e.g. seaborn)
Convey information in a way that is otherwise difficult/impossible to describe
Source: [Financial Times](https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938), 27 Aug 2021.
Do you have the compute power to visualize every data point? Probably not…
Do you need a graphics processing unit?
Do you know how to utilize your lab’s GPU?
Forget putting all your great insights into one figure!
Ranking of visual communication channels
Lisa Charlotte Muth. What to consider when choosing colors for data visualization. Datawrapper. Published May 29, 2018. Accessed November 7, 2022. https://blog.datawrapper.de/colors/
Lisa Charlotte Muth. What to consider when choosing colors for data visualization. Datawrapper. Published May 29, 2018. Accessed November 7, 2022. https://blog.datawrapper.de/colors/
Wilke CO. Fundamentals of Data Visualization. Accessed November 7, 2022. https://clauswilke.com/dataviz/image-file-formats.html
Wilke CO. Fundamentals of Data Visualization. Accessed November 7, 2022. https://clauswilke.com/dataviz/image-file-formats.html
Often the same visualization won’t work for every audience…
Graphical Abstracts
Infographics
InkSkape
JavaScript
Is there a field specific tool you might utilize?
It’s easy to make a “bad” plot.
Taste
Data
Perception
It is not good enough to commit to not misleading your audience.
Acronym | Name | Type | Application |
---|---|---|---|
Portable Document Format | vector | general purpose | |
eps | Encapsulated PostScript | vector | general purpose, outdated; use pdf |
svg | Scalable Vector Graphics | vector | online use |
png | Portable Network Graphics | bitmap | optimized for line drawings |
jpeg | Joint Photographic Experts Group | bitmap | optimized for photographic images |
tiff | Tagged Image File Format | bitmap | print production, accurate color reproduction |
raw | Raw Image File | bitmap | digital photography, needs post-processing |
gif | Graphics Interchange Format | bitmap | outdated for static figures, Ok for animations |
Vector graphics redrawn “on the fly” vs bitmap always bitmap
Bitmap Compression (to keep file sizes small)
Lossless = pixel-for-pixel identical
Lossy = accepts some image degradation in return for smaller file sizes
Rule of Thumb: Store visualization in maximum resolution format, copy at lower resolutions when necessary
Check that your plots are color blind friendly
Add alt-text to #scicomm